Layered Ni(OH)2-Co(OH)2 films prepared by electrodeposition as charge storage electrodes for hybrid supercapacitors
نویسندگان
چکیده
Consecutive layers of Ni(OH)2 and Co(OH)2 were electrodeposited on stainless steel current collectors for preparing charge storage electrodes of high specific capacity with potential application in hybrid supercapacitors. Different electrodes were prepared consisting on films of Ni(OH)2, Co(OH)2, Ni1/2Co1/2(OH)2 and layered films of Ni(OH)2 on Co(OH)2 and Co(OH)2 on Ni(OH)2 to highlight the advantages of the new architecture. The microscopy studies revealed the formation of nanosheets in the Co(OH)2 films and of particles agglomerates in the Ni(OH)2 films. Important morphological changes were observed in the double hydroxides films and layered films. Film growth by electrodeposition was governed by instantaneous nucleation mechanism. The new architecture composed of Ni(OH)2 on Co(OH)2 displayed a redox response characterized by the presence of two peaks in the cyclic voltammograms, arising from redox reactions of the metallic species present in the layered film. These electrodes revealed a specific capacity of 762 C g-1 at the specific current of 1 A g-1. The hybrid cell using Ni(OH)2 on Co(OH)2 as positive electrode and carbon nanofoam paper as negative electrode display specific energies of 101.3 W h g-1 and 37.8 W h g-1 at specific powers of 0.2 W g-1 and 2.45 W g-1, respectively.
منابع مشابه
Development of hybrid materials based on sponge supported reduced graphene oxide and transition metal hydroxides for hybrid energy storage devices
Earnest efforts have been taken to design hybrid energy storage devices using hybrid electrodes based on capacitive (rGO) and pseudocapacitive (Ni(OH)2 and Co(OH)2) materials deposited on the skeleton of 3D macroporous (indicate sponge material) sponge support. Conducting framework was formed by coating rGO on macroporous sponge on which subsequent deposition of Ni(OH)2 and Co(OH)2 was carried ...
متن کاملNanofoaming to Boost the Electrochemical Performance of Ni@Ni(OH)2 Nanowires for Ultrahigh Volumetric Supercapacitors.
Three-dimensional free-standing film electrodes have aroused great interest for energy storage devices. However, small volumetric capacity and low operating voltage limit their practical application for large energy storage applications. Herein, a facile and novel nanofoaming process was demonstrated to boost the volumetric electrochemical capacitance of the devices via activation of Ni nanowir...
متن کامل3D TiO2@Ni(OH)2 Core-shell Arrays with Tunable Nanostructure for Hybrid Supercapacitor Application
Three dimensional hierarchical nanostructures have attracted great attention for electrochemical energy storage applications. In this work, self-supported TiO2@Ni(OH)2 core-shell nanowire arrays are prepared on carbon fiber paper via the combination of hydrothermal synthesis and chemical bath deposition. In this core-shell hybrid, the morphology and wall size of the interconnected nanoflake she...
متن کاملHierarchical Cobalt Hydroxide and B/N Co-Doped Graphene Nanohybrids Derived from Metal-Organic Frameworks for High Energy Density Asymmetric Supercapacitors
To cater for the demands of electrochemical energy storage system, the development of cost effective, durable and highly efficient electrode materials is desired. Here, a novel electrode material based on redox active β-Co(OH)2 and B, N co-doped graphene nanohybrid is presented for electrochemical supercapacitor by employing a facile metal-organic frameworks (MOFs) route through pyrolysis and h...
متن کاملHierarchical Co-based Porous Layered Double Hydroxide Arrays Derived via Alkali Etching for High-performance Supercapacitors
Hierarchical nanoarchitecture and porous structure can both provide advantages for improving the electrochemical performance in energy storage electrodes. Here we report a novel strategy to synthesize new electrode materials, hierarchical Co-based porous layered double hydroxide (PLDH) arrays derived via alkali etching from Co(OH)2@CoAl LDH nanoarrays. This structure not only has the benefits o...
متن کامل